Mutagenesis and Expression of Mammalian Clotting Factor IX

Mark McCleland
The Children's Hospital of Philadelphia and Lycoming College
Hemophilia B

- X-linked blood clotting disorder characterized by a deficiency in the factor IX protein
- Factor IX is normally produced in the liver and secreted into the blood at a concentration of 5,000 ng/ml
- The severity of the disease depends upon the location of the mutation within the factor IX gene
- Relatively rare disease affecting 1 in 40,000 people
Clotting Pathway

- Factor IX is involved in the intrinsic pathway
- Factor IXa, calcium ion, phospholipids, and Factor VIII activate Factor X
- Clotting is still capable through the extrinsic pathway
Treatment For Hemophilia B

- Currently the only treatment for Hemophilia B is to infuse factor concentrates at the time of a bleed, however this treatment is expensive and inconvenient.
- Recently, gene therapy has become a feasible cure for hemophilia.
What is Gene Therapy?

• Gene therapy uses some type of vector to deliver the correct copy of a gene to the host cells.

• In this experiment AAV (adeno-associated virus) was used to deliver the correct copy of the factor IX gene to skeletal muscle cells.

• The host cells then produce and secrete the normal factor IX protein into the blood.
The AAV Transgene

<table>
<thead>
<tr>
<th>ITR</th>
<th>Promoter</th>
<th>FIX</th>
<th>Intron</th>
<th>Factor IX</th>
<th>Poly A Tail</th>
<th>ITR</th>
</tr>
</thead>
</table>

- The transgene located in the AAV DNA expresses the factor IX gene
- Different promoter, intron, and poly A tail combinations can increase expression of Factor IX
Promoter Combinations

• Viral vs. Tissue specific promoters
 – Human Skeletal Alpha Actin (HSA)
 – Human alpha anti-trypsin (HAAT)
 – Cytomegalovirus (CMV)

• It has been found that:
 – HSA constructs expressed poorly in muscle
 – CMV promoter is shut down in vivo in the liver
The Goal of This Experiment

- Create two mutations in the Factor IX gene which are thought to decrease clotting times
- Breed mice to be hemophilic and immunodeficient
- Production of AAV
- Inject mutant human Factor IX constructs into double knockout mice
 - Human factor IX corrects the bleeding defect in mice
 - Mice create antibody to human factor IX protein
The Mutant Constructs

- **K5A**- Previously been shown that FIX has a binding affinity to Collagen IV located in the interstitial space thus decreasing amount of protein that makes it to the blood

- **R338A**- Thought to increase the specific activity of factor IX three fold during its cleavage from factor IX to factor IXa
Mutagenesis of Canine Factor IX

T7 \[\rightarrow\] 2.3 kB \[\rightarrow\] T3

T7

EcoRV

Xho1

lacZ

K9-2 (520 bp) \[\rightarrow\] R338A-1 \[\rightarrow\] R338A-2 (775 bp) \[\rightarrow\] K9-4

SK-1 (290 bp) \[\rightarrow\] K5A-1 \[\rightarrow\] K5A-2 (697 bp) \[\rightarrow\] K9-4

BglII

BamHI

pSK-cF IX (EcoRV/BamHI) 4.8 kB
Breeding Strategy to Create Double Knockouts

P₁
- Male: HB Normal / Rag 1
- Female: HB / Rag 1 Normal

F₁
- Male: HB / Rag 1 Carrier
- Female: HB Carrier / Rag 1 Carrier

F₂
- Male: HB / Rag 1
- Female: HB / Rag 1 or HB carrier / Rag 1

F₃
1/2 Double Knockouts
DNA Extractions for Hemophilia B and Rag 1 Genotyping

- Bleed mice from the retro-orbital plexus behind the eye
- Spin down the blood, remove the plasma, and extract DNA from the blood cells
- Use a PCR based strategy to genotype mice for hemophilia and Rag 1 alleles
PCR Strategy Used to Genotype

Normal Rag 1 gene

Rag 1 | Neomycin | Pgk-1 | Rag 1

Rag 1 | Hemophilia B

[Genetic analysis images]
Confirmation of Genotypes

• Rag 1
 – ELISA (Enzyme-Linked Immunosorbent Assay) -measuring IgG in plasma
 – FACS (Fluorescence-Activated Cell Sorter)-
 Stain CD-3 cells, separate, and count

• Hemophilia
 – aPTT (activated Partial Thromboplastin Time)-
 measures the active Factor IX in the blood
Production of AAV

- Grow up 100 plates of AAV free 293 cells (human embryonic kidney cells)
- Infect with adenovirus
- Transfect with desired expression plasmid and a trans plasmid supplying rep + cap proteins
- Harvest cells and lyse by sonication
- Purify by 3 CsCl gradient ultra-centrifugations
- Titer virus with a quantitative slot blot hybridization
PCR Strategy used to locate AAV in CsCl gradient

• AAV usually located around 1.40 g/ml CsCl
• PCR primers located in CMV promoter and intron 1 were designed
• Only 26 cycle PCR was run to quantitate the amount of virus per fraction
Titering of the virus

- Plasmid DNA was serially diluted to 10, 5, 2, 1, and .5 ng
- 2 \(\mu \)l of viral DNA was extracted and loaded as 5, 2.5 and 1 \(\mu \)l aliquots
- Viral titer was \(\sim 10^8 \) viral particles / \(\mu \)l
Injection of Mutant Factor IX
AAV Vector

- Collect blood via a tail cut into sodium citrate and perform an aPTT to prove that mice are truly hemophillic
- Inject AAV intramuscularly
- Inject mononine (plasma derived human factor IX) intraperitoneal to prevent the mouse from bleeding to death after surgery
Mice Numbers for Injection

- Amount of virus injection is based on size (kg) of animal
- 2 mice - 1×10^{11} particles of AAV-CMV-hFIX-WT
- 2 mice - 3×10^{11} particles of AAV-CMV-hFIX-WT
 - To determine when muscle is saturated with virus
- 3 mice - 1×10^{11} particles of AAV-CMV-hFIX-K5A
- 3 mice - 1×10^{11} particles of AAV-CMV-hFIX-R338A
Mutant Factor IX Analysis

• K5A
 – Perform an ELISA comparing levels of Factor IX in the blood of mice injected with normal factor IX and mutant factor IX
 – Sacrifice mice and perform immunofluorescence staining of muscle cross sections to show that Factor IX no longer binds to collagen IV

• R338A
 – Perform an ELISA and aPTT on plasma taken from R338A injected mice and normal factor IX injected mice to show that decreased bleeding time correlates with factor IX levels
Thank You’s

• Dr. Kathy High
• Dr. Roland Herzog
• Dr. Valder Arruda
• U Penn and CHOP
• Dr. Jeff Newman
• Dr. Holly Bendorf
• Dr. Edward Gabriel